

NAMING SEQUENCE			wavelength	TRADITIONAL SPECTRUM	
Red	R		668	Red	
Reddish-yellow	R	Y	600	Orange	
Yellow		Y	580	Yellow	(
Yellowish-green	G	Y	550	'Chartreuse'	
Green	G		520	Green	
Greenish-blue		B	490	Cyan	
Blue		B	464	Blue	
Bluish-red		B	440	Indigo Violet	\%

2

3

4

5

6

7

Opponent colour perceptual phenomenology

Appearance

No hue combines redness \& greenness, nor blueness \& yellowness

Induction

One member of an opponent pair induces its complementary colour:

- successive colour contrast
- simultaneous colour contrast

Cancellation
The colours of an opponent pair should cancel to achromatic white (or grey)

9
'COLOUR' is an illusion created by the brain as a perceptual correlate of spectral wavelength.

There is nothing in the nature of the physical universe, nor the physics of light to compel colour-opponency.

Colour-opponency is entirely caused by biology
\& by the construction of our nervous system.

So what is the PHYSIOLOGY of colour perception?

3 cone types: LW ('red') MW ('green') SW ('blue') 1 rod type.	principle of 'univariance' Activity of cone (hyperpolarization) is a univariant property that depends on two properties of incident light: wavelength and intensity. Hence cone activity yields no precise information about wavelength. equal quantum catch
C O LOUR comes from cone comparison	$\begin{aligned} & 400 \quad 500 \quad 600 \quad 700 \\ & \text { wavelength (nanometers) } \end{aligned}$

11

13

14

15

16

17

19

Cone-opponent colour space

Unique green and unique red add to give a hue that is mainly yellow

21

Anthropological studies confirm that different languages/cultures (not just English) have primary colour terms for 'red', 'green', 'blue' and 'yellow' (and not orange, magenta, cyan \& chartreuse, for instance).

The cardinal axes of colour space are (crimson) red-cyan \& violet-chartreuse - not red-green \& blue-yellow - hence the retinogeniculate parvo and konio coneopponent channels cannot be the direct basis of human primary colour perception. Instead, we must infer that cortical mechanisms recombine the retinogeniculate channels (much as the parvo and konio channels themselves recombine cone signals), and that these cortical recombinant channels are the basis of primary colour perception.

The location of unique blue, unique yellow, unique red, and unique green in the cardinal axes (i.e. cone-opponent) colour space explains, or rationalises, why blue \& yellow cancel to give white, but red and green cancel to give yellow.

Cortical recombination ...?
Going by the colour phenomenology, we would infer that:
Redness is supported by $\mathrm{L}-\mathrm{M}$ and $\mathrm{S}-(\mathrm{L}+\mathrm{M})$ [the latter component rationalising the violet colour of light at the SW end of the spectrum];
Greenness is supported by M-L and ($\mathrm{L}+\mathrm{M}$)-S;
Yellowness is supported only by M-L;
Blueness is supported by $\mathrm{S}-(\mathrm{M}+\mathrm{L})$ and $\mathrm{M}-\mathrm{L}$, plus a minor contribution from L-M !
BUT - direct physiological evidence to support such a systematic cortical recombination of the retinogeniculate colour channels has yet to be obtained.

Colour constancy

The computational principles of colour constancy can be understood by first examining achromatic lightness constancy...

24

achromatic simultaneous contrast

25

27

29

31

Is this an illusion, or an example of 'lightness constancy'?

33

Different coloured surfaces have different spectral reflectance curves, including fish...

The goal of colour perception is to perceive the spectral reflectance of
the surfaces in view.

35

BLUE/BLACK..?
(PERIWINKLE /BROWN)
It all depends upon a subjective (\& individually variable) interpretation of lighting conditions. Objects viewed in shade have excess blue light, hence the brain's percept tends to discount some blueness from the retinal image. People differ in thinking that the dress is or is not in the shade! - Shows how prior assumptions can influence perception (predictive coding).

37

38

Colour constancy depends on 'discounting the illuminant'

How does the differential blue detector respond with an excess of blue illumination?

41

43

Recordings of colour cells in area V1 and V4, using Mondrian stimuli
45

47

49

